Metamath Proof Explorer


Theorem snssb

Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025)

Ref Expression
Assertion snssb ABAVAB

Proof

Step Hyp Ref Expression
1 dfss2 ABxxAxB
2 velsn xAx=A
3 2 imbi1i xAxBx=AxB
4 3 albii xxAxBxx=AxB
5 eleq1 x=AxBAB
6 5 pm5.74i x=AxBx=AAB
7 6 albii xx=AxBxx=AAB
8 19.23v xx=AABxx=AAB
9 isset AVxx=A
10 9 bicomi xx=AAV
11 10 imbi1i xx=AABAVAB
12 7 8 11 3bitri xx=AxBAVAB
13 1 4 12 3bitri ABAVAB