Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) |
2 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
3 |
2
|
imbi1i |
⊢ ( ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
6 |
5
|
pm5.74i |
⊢ ( ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
8 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
9 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
10 |
9
|
bicomi |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ V ) |
11 |
10
|
imbi1i |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |
12 |
7 8 11
|
3bitri |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |
13 |
1 4 12
|
3bitri |
⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |