Metamath Proof Explorer


Theorem snssb

Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025)

Ref Expression
Assertion snssb ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐴 ∈ V → 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥𝐵 ) )
2 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
3 2 imbi1i ( ( 𝑥 ∈ { 𝐴 } → 𝑥𝐵 ) ↔ ( 𝑥 = 𝐴𝑥𝐵 ) )
4 3 albii ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
6 5 pm5.74i ( ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ( 𝑥 = 𝐴𝐴𝐵 ) )
7 6 albii ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝐴𝐵 ) )
8 19.23v ( ∀ 𝑥 ( 𝑥 = 𝐴𝐴𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) )
9 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
10 9 bicomi ( ∃ 𝑥 𝑥 = 𝐴𝐴 ∈ V )
11 10 imbi1i ( ( ∃ 𝑥 𝑥 = 𝐴𝐴𝐵 ) ↔ ( 𝐴 ∈ V → 𝐴𝐵 ) )
12 7 8 11 3bitri ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) ↔ ( 𝐴 ∈ V → 𝐴𝐵 ) )
13 1 4 12 3bitri ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐴 ∈ V → 𝐴𝐵 ) )