Metamath Proof Explorer


Theorem snssgOLD

Description: Obsolete version of snssgOLD as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snssgOLD AVABAB

Proof

Step Hyp Ref Expression
1 velsn xAx=A
2 1 imbi1i xAxBx=AxB
3 2 albii xxAxBxx=AxB
4 3 a1i AVxxAxBxx=AxB
5 dfss2 ABxxAxB
6 5 a1i AVABxxAxB
7 clel2g AVABxx=AxB
8 4 6 7 3bitr4rd AVABAB