Metamath Proof Explorer


Theorem snssiALTVD

Description: Virtual deduction proof of snssiALT . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snssiALTVD A B A B

Proof

Step Hyp Ref Expression
1 dfss2 A B x x A x B
2 idn1 A B A B
3 idn2 A B , x A x A
4 velsn x A x = A
5 3 4 e2bi A B , x A x = A
6 eleq1a A B x = A x B
7 2 5 6 e12 A B , x A x B
8 7 in2 A B x A x B
9 8 gen11 A B x x A x B
10 biimpr A B x x A x B x x A x B A B
11 1 9 10 e01 A B A B
12 11 in1 A B A B