| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ss |
⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) |
| 2 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 3 |
|
idn2 |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ { 𝐴 } ▶ 𝑥 ∈ { 𝐴 } ) |
| 4 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 5 |
3 4
|
e2bi |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ { 𝐴 } ▶ 𝑥 = 𝐴 ) |
| 6 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 |
2 5 6
|
e12 |
⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ { 𝐴 } ▶ 𝑥 ∈ 𝐵 ) |
| 8 |
7
|
in2 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) |
| 9 |
8
|
gen11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) |
| 10 |
|
biimpr |
⊢ ( ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) → { 𝐴 } ⊆ 𝐵 ) ) |
| 11 |
1 9 10
|
e01 |
⊢ ( 𝐴 ∈ 𝐵 ▶ { 𝐴 } ⊆ 𝐵 ) |
| 12 |
11
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) |