Metamath Proof Explorer


Theorem snssiALTVD

Description: Virtual deduction proof of snssiALT . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snssiALTVD ABAB

Proof

Step Hyp Ref Expression
1 dfss2 ABxxAxB
2 idn1 ABAB
3 idn2 AB,xAxA
4 velsn xAx=A
5 3 4 e2bi AB,xAx=A
6 eleq1a ABx=AxB
7 2 5 6 e12 AB,xAxB
8 7 in2 ABxAxB
9 8 gen11 ABxxAxB
10 biimpr ABxxAxBxxAxBAB
11 1 9 10 e01 ABAB
12 11 in1 ABAB