Metamath Proof Explorer


Theorem soasym

Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion soasym ROrAXAYAXRY¬YRX

Proof

Step Hyp Ref Expression
1 sotric ROrAXAYAXRY¬X=YYRX
2 pm2.46 ¬X=YYRX¬YRX
3 1 2 biimtrdi ROrAXAYAXRY¬YRX