Metamath Proof Explorer


Theorem spanid

Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spanid ASspanA=A

Proof

Step Hyp Ref Expression
1 shss ASA
2 spanval AspanA=xS|Ax
3 1 2 syl ASspanA=xS|Ax
4 intmin ASxS|Ax=A
5 3 4 eqtrd ASspanA=A