Metamath Proof Explorer


Theorem spansn

Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansn AspanA=A

Proof

Step Hyp Ref Expression
1 sneq A=ifAA0A=ifAA0
2 1 fveq2d A=ifAA0spanA=spanifAA0
3 1 fveq2d A=ifAA0A=ifAA0
4 3 fveq2d A=ifAA0A=ifAA0
5 2 4 eqeq12d A=ifAA0spanA=AspanifAA0=ifAA0
6 ifhvhv0 ifAA0
7 6 spansni spanifAA0=ifAA0
8 5 7 dedth AspanA=A