Metamath Proof Explorer


Theorem spcegf

Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997)

Ref Expression
Hypotheses spcgf.1 _xA
spcgf.2 xψ
spcgf.3 x=Aφψ
Assertion spcegf AVψxφ

Proof

Step Hyp Ref Expression
1 spcgf.1 _xA
2 spcgf.2 xψ
3 spcgf.3 x=Aφψ
4 2 nfn x¬ψ
5 3 notbid x=A¬φ¬ψ
6 1 4 5 spcgf AVx¬φ¬ψ
7 6 con2d AVψ¬x¬φ
8 df-ex xφ¬x¬φ
9 7 8 imbitrrdi AVψxφ