Metamath Proof Explorer


Theorem spcv

Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994)

Ref Expression
Hypotheses spcv.1 AV
spcv.2 x=Aφψ
Assertion spcv xφψ

Proof

Step Hyp Ref Expression
1 spcv.1 AV
2 spcv.2 x=Aφψ
3 2 spcgv AVxφψ
4 1 3 ax-mp xφψ