Metamath Proof Explorer


Theorem spimfw

Description: Specialization, with additional weakening (compared to sp ) to allow bundling of x and y . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017) (Proof shortened by Wolf Lammen, 7-Aug-2017)

Ref Expression
Hypotheses spimfw.1 ¬ψx¬ψ
spimfw.2 x=yφψ
Assertion spimfw ¬x¬x=yxφψ

Proof

Step Hyp Ref Expression
1 spimfw.1 ¬ψx¬ψ
2 spimfw.2 x=yφψ
3 2 speimfw ¬x¬x=yxφxψ
4 df-ex xψ¬x¬ψ
5 1 con1i ¬x¬ψψ
6 4 5 sylbi xψψ
7 3 6 syl6 ¬x¬x=yxφψ