Metamath Proof Explorer


Theorem spsbbi

Description: Biconditional property for substitution. Closed form of sbbii . Specialization of biconditional. (Contributed by NM, 2-Jun-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020)

Ref Expression
Assertion spsbbi xφψtxφtxψ

Proof

Step Hyp Ref Expression
1 biimp φψφψ
2 1 alimi xφψxφψ
3 spsbim xφψtxφtxψ
4 2 3 syl xφψtxφtxψ
5 biimpr φψψφ
6 5 alimi xφψxψφ
7 spsbim xψφtxψtxφ
8 6 7 syl xφψtxψtxφ
9 4 8 impbid xφψtxφtxψ