| Step | Hyp | Ref | Expression | 
						
							| 1 |  | biimp |  |-  ( ( ph <-> ps ) -> ( ph -> ps ) ) | 
						
							| 2 | 1 | alimi |  |-  ( A. x ( ph <-> ps ) -> A. x ( ph -> ps ) ) | 
						
							| 3 |  | spsbim |  |-  ( A. x ( ph -> ps ) -> ( [ t / x ] ph -> [ t / x ] ps ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( A. x ( ph <-> ps ) -> ( [ t / x ] ph -> [ t / x ] ps ) ) | 
						
							| 5 |  | biimpr |  |-  ( ( ph <-> ps ) -> ( ps -> ph ) ) | 
						
							| 6 | 5 | alimi |  |-  ( A. x ( ph <-> ps ) -> A. x ( ps -> ph ) ) | 
						
							| 7 |  | spsbim |  |-  ( A. x ( ps -> ph ) -> ( [ t / x ] ps -> [ t / x ] ph ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A. x ( ph <-> ps ) -> ( [ t / x ] ps -> [ t / x ] ph ) ) | 
						
							| 9 | 4 8 | impbid |  |-  ( A. x ( ph <-> ps ) -> ( [ t / x ] ph <-> [ t / x ] ps ) ) |