Metamath Proof Explorer


Theorem sqeq0i

Description: A complex number is zero iff its square is zero. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypothesis sqval.1 A
Assertion sqeq0i A2=0A=0

Proof

Step Hyp Ref Expression
1 sqval.1 A
2 sqeq0 AA2=0A=0
3 1 2 ax-mp A2=0A=0