Metamath Proof Explorer


Theorem sqrecii

Description: The square of a reciprocal is the reciprocal of the square. (Contributed by NM, 17-Sep-1999)

Ref Expression
Hypotheses sqval.1 A
sqreci.1 A0
Assertion sqrecii 1A2=1A2

Proof

Step Hyp Ref Expression
1 sqval.1 A
2 sqreci.1 A0
3 ax-1cn 1
4 3 1 3 1 2 2 divmuldivi 1A1A=11AA
5 1t1e1 11=1
6 5 oveq1i 11AA=1AA
7 4 6 eqtri 1A1A=1AA
8 1 2 reccli 1A
9 8 sqvali 1A2=1A1A
10 1 sqvali A2=AA
11 10 oveq2i 1A2=1AA
12 7 9 11 3eqtr4i 1A2=1A2