Metamath Proof Explorer


Theorem sratset

Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion sratset φ TopSet W = TopSet A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 tsetid TopSet = Slot TopSet ndx
4 slotstnscsi TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx
5 4 simp1i TopSet ndx Scalar ndx
6 5 necomi Scalar ndx TopSet ndx
7 4 simp2i TopSet ndx ndx
8 7 necomi ndx TopSet ndx
9 4 simp3i TopSet ndx 𝑖 ndx
10 9 necomi 𝑖 ndx TopSet ndx
11 1 2 3 6 8 10 sralem φ TopSet W = TopSet A