Metamath Proof Explorer


Theorem srgcom

Description: Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgacl.b B=BaseR
srgacl.p +˙=+R
Assertion srgcom RSRingXBYBX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 srgacl.b B=BaseR
2 srgacl.p +˙=+R
3 srgcmn RSRingRCMnd
4 1 2 cmncom RCMndXBYBX+˙Y=Y+˙X
5 3 4 syl3an1 RSRingXBYBX+˙Y=Y+˙X