Metamath Proof Explorer


Theorem srgdi

Description: Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgdi.b B=BaseR
srgdi.p +˙=+R
srgdi.t ·˙=R
Assertion srgdi RSRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙Z

Proof

Step Hyp Ref Expression
1 srgdi.b B=BaseR
2 srgdi.p +˙=+R
3 srgdi.t ·˙=R
4 1 2 3 srgdilem RSRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙ZX+˙Y·˙Z=X·˙Z+˙Y·˙Z
5 4 simpld RSRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙Z