Metamath Proof Explorer


Theorem ss2abi

Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Hypothesis ss2abi.1 φψ
Assertion ss2abi x|φx|ψ

Proof

Step Hyp Ref Expression
1 ss2abi.1 φψ
2 tru
3 1 a1i φψ
4 3 ss2abdv x|φx|ψ
5 2 4 ax-mp x|φx|ψ