Metamath Proof Explorer


Theorem ss2rexv

Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)

Ref Expression
Assertion ss2rexv ABxAyAφxByBφ

Proof

Step Hyp Ref Expression
1 ssrexv AByAφyBφ
2 1 reximdv ABxAyAφxAyBφ
3 ssrexv ABxAyBφxByBφ
4 2 3 syld ABxAyAφxByBφ