Metamath Proof Explorer


Theorem ssabdv

Description: Deduction of abstraction subclass from implication. (Contributed by SN, 22-Dec-2024)

Ref Expression
Hypothesis ssabdv.1 φxAψ
Assertion ssabdv φAx|ψ

Proof

Step Hyp Ref Expression
1 ssabdv.1 φxAψ
2 abid1 A=x|xA
3 1 ss2abdv φx|xAx|ψ
4 2 3 eqsstrid φAx|ψ