Metamath Proof Explorer


Theorem ssdf2

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses ssdf2.p xφ
ssdf2.a _xA
ssdf2.b _xB
ssdf2.x φxAxB
Assertion ssdf2 φAB

Proof

Step Hyp Ref Expression
1 ssdf2.p xφ
2 ssdf2.a _xA
3 ssdf2.b _xB
4 ssdf2.x φxAxB
5 4 ex φxAxB
6 1 2 3 5 ssrd φAB