Metamath Proof Explorer


Theorem ssdf2

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses ssdf2.p x φ
ssdf2.a _ x A
ssdf2.b _ x B
ssdf2.x φ x A x B
Assertion ssdf2 φ A B

Proof

Step Hyp Ref Expression
1 ssdf2.p x φ
2 ssdf2.a _ x A
3 ssdf2.b _ x B
4 ssdf2.x φ x A x B
5 4 ex φ x A x B
6 1 2 3 5 ssrd φ A B