Metamath Proof Explorer


Theorem ssdif2d

Description: If A is contained in B and C is contained in D , then ( A \ D ) is contained in ( B \ C ) . Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssdifd.1 φ A B
ssdif2d.2 φ C D
Assertion ssdif2d φ A D B C

Proof

Step Hyp Ref Expression
1 ssdifd.1 φ A B
2 ssdif2d.2 φ C D
3 2 sscond φ A D A C
4 1 ssdifd φ A C B C
5 3 4 sstrd φ A D B C