Metamath Proof Explorer


Theorem sseqtrrd

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrrd.1 φAB
sseqtrrd.2 φC=B
Assertion sseqtrrd φAC

Proof

Step Hyp Ref Expression
1 sseqtrrd.1 φAB
2 sseqtrrd.2 φC=B
3 2 eqcomd φB=C
4 1 3 sseqtrd φAC