Metamath Proof Explorer


Theorem ssint

Description: Subclass of a class intersection. Theorem 5.11(viii) of Monk1 p. 52 and its converse. (Contributed by NM, 14-Oct-1999)

Ref Expression
Assertion ssint ABxBAx

Proof

Step Hyp Ref Expression
1 dfss3 AByAyB
2 vex yV
3 2 elint2 yBxByx
4 3 ralbii yAyByAxByx
5 ralcom yAxByxxByAyx
6 dfss3 AxyAyx
7 6 ralbii xBAxxByAyx
8 5 7 bitr4i yAxByxxBAx
9 1 4 8 3bitri ABxBAx