Metamath Proof Explorer


Theorem ssintrab

Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015)

Ref Expression
Assertion ssintrab AxB|φxBφAx

Proof

Step Hyp Ref Expression
1 df-rab xB|φ=x|xBφ
2 1 inteqi xB|φ=x|xBφ
3 2 sseq2i AxB|φAx|xBφ
4 impexp xBφAxxBφAx
5 4 albii xxBφAxxxBφAx
6 ssintab Ax|xBφxxBφAx
7 df-ral xBφAxxxBφAx
8 5 6 7 3bitr4i Ax|xBφxBφAx
9 3 8 bitri AxB|φxBφAx