Metamath Proof Explorer


Theorem sspgval

Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspg.y Y=BaseSetW
sspg.g G=+vU
sspg.f F=+vW
sspg.h H=SubSpU
Assertion sspgval UNrmCVecWHAYBYAFB=AGB

Proof

Step Hyp Ref Expression
1 sspg.y Y=BaseSetW
2 sspg.g G=+vU
3 sspg.f F=+vW
4 sspg.h H=SubSpU
5 1 2 3 4 sspg UNrmCVecWHF=GY×Y
6 5 oveqd UNrmCVecWHAFB=AGY×YB
7 ovres AYBYAGY×YB=AGB
8 6 7 sylan9eq UNrmCVecWHAYBYAFB=AGB