Metamath Proof Explorer


Theorem sspsstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses sspsstrd.1 φAB
sspsstrd.2 φBC
Assertion sspsstrd φAC

Proof

Step Hyp Ref Expression
1 sspsstrd.1 φAB
2 sspsstrd.2 φBC
3 sspsstr ABBCAC
4 1 2 3 syl2anc φAC