Metamath Proof Explorer


Theorem sspwimpcfVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf is sspwimpcfVD without virtual deductions and was derived from sspwimpcfVD . The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- (. A C_ B ->. A C_ B ).
2:: |- (. ........... x e. ~P A ->. x e. ~P A ).
3:2: |- (. ........... x e. ~P A ->. x C_ A ).
4:3,1: |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ).
5:: |- x e.V
6:4,5: |- (. (. A C B ,. x e. ~P A ). ->. x e. ~P B ).
7:6: |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ).
8:7: |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ).
9:8: |- (. A C_ B ->. ~P A C_ ~P B ).
qed:9: |- ( A C_ B -> ~P A C_ ~P B )

Ref Expression
Assertion sspwimpcfVD AB𝒫A𝒫B

Proof

Step Hyp Ref Expression
1 vex xV
2 idn1 ABAB
3 idn1 x𝒫Ax𝒫A
4 elpwi x𝒫AxA
5 3 4 el1 x𝒫AxA
6 sstr2 xAABxB
7 6 impcom ABxAxB
8 2 5 7 el12 ABx𝒫AxB
9 elpwg xVx𝒫BxB
10 9 biimpar xVxBx𝒫B
11 1 8 10 el021old ABx𝒫Ax𝒫B
12 11 int2 ABx𝒫Ax𝒫B
13 12 gen11 ABxx𝒫Ax𝒫B
14 dfss2 𝒫A𝒫Bxx𝒫Ax𝒫B
15 14 biimpri xx𝒫Ax𝒫B𝒫A𝒫B
16 13 15 el1 AB𝒫A𝒫B
17 16 in1 AB𝒫A𝒫B