Metamath Proof Explorer


Theorem ssrel3

Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019)

Ref Expression
Assertion ssrel3 RelAABxyxAyxBy

Proof

Step Hyp Ref Expression
1 ssrel RelAABxyxyAxyB
2 df-br xAyxyA
3 df-br xByxyB
4 2 3 imbi12i xAyxByxyAxyB
5 4 2albii xyxAyxByxyxyAxyB
6 1 5 bitr4di RelAABxyxAyxBy