Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrel3 | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
2 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
3 | df-br | ⊢ ( 𝑥 𝐵 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
4 | 2 3 | imbi12i | ⊢ ( ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
5 | 4 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
6 | 1 5 | bitr4di | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ) ) |