Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eqrel2 | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ) ) | |
2 | ssrel3 | ⊢ ( Rel 𝐵 → ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐵 𝑦 → 𝑥 𝐴 𝑦 ) ) ) | |
3 | 1 2 | bi2anan9 | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐵 𝑦 → 𝑥 𝐴 𝑦 ) ) ) ) |
4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
5 | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → 𝑥 𝐵 𝑦 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐵 𝑦 → 𝑥 𝐴 𝑦 ) ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) ) |