Metamath Proof Explorer


Theorem ssrmof

Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses ssrexf.1 _xA
ssrexf.2 _xB
Assertion ssrmof AB*xBφ*xAφ

Proof

Step Hyp Ref Expression
1 ssrexf.1 _xA
2 ssrexf.2 _xB
3 1 2 dfss2f ABxxAxB
4 3 biimpi ABxxAxB
5 pm3.45 xAxBxAφxBφ
6 5 alimi xxAxBxxAφxBφ
7 moim xxAφxBφ*xxBφ*xxAφ
8 4 6 7 3syl AB*xxBφ*xxAφ
9 df-rmo *xBφ*xxBφ
10 df-rmo *xAφ*xxAφ
11 8 9 10 3imtr4g AB*xBφ*xAφ