Metamath Proof Explorer


Theorem sst1

Description: A topology finer than a T_1 topology is T_1. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t1sep.1 X=J
Assertion sst1 JFreKTopOnXJKKFre

Proof

Step Hyp Ref Expression
1 t1sep.1 X=J
2 t1top JFreJTop
3 cnt1 JFreIX:X1-1XIXKCnJKFre
4 1 2 3 sshauslem JFreKTopOnXJKKFre