Metamath Proof Explorer


Theorem structfn

Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis structfn.1 FStructMN
Assertion structfn FunF-1-1domF1N

Proof

Step Hyp Ref Expression
1 structfn.1 FStructMN
2 1 structfun FunF-1-1
3 isstruct FStructMNMNMNFunFdomFMN
4 1 3 mpbi MNMNFunFdomFMN
5 4 simp3i domFMN
6 4 simp1i MNMN
7 6 simp1i M
8 elnnuz MM1
9 7 8 mpbi M1
10 fzss1 M1MN1N
11 9 10 ax-mp MN1N
12 5 11 sstri domF1N
13 2 12 pm3.2i FunF-1-1domF1N