Metamath Proof Explorer


Theorem structgrssvtxlem

Description: Lemma for structgrssvtx and structgrssiedg . (Contributed by AV, 14-Oct-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structgrssvtx.g φGStructX
structgrssvtx.v φVY
structgrssvtx.e φEZ
structgrssvtx.s φBasendxVefndxEG
Assertion structgrssvtxlem φ2domG

Proof

Step Hyp Ref Expression
1 structgrssvtx.g φGStructX
2 structgrssvtx.v φVY
3 structgrssvtx.e φEZ
4 structgrssvtx.s φBasendxVefndxEG
5 fvexd φBasendxV
6 fvexd φefndxV
7 structex GStructXGV
8 1 7 syl φGV
9 basendxnedgfndx Basendxefndx
10 9 a1i φBasendxefndx
11 5 6 2 3 8 10 4 hashdmpropge2 φ2domG