Metamath Proof Explorer


Theorem sub1m1

Description: Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018)

Ref Expression
Assertion sub1m1 NN-1-1=N2

Proof

Step Hyp Ref Expression
1 id NN
2 1cnd N1
3 1 2 2 subsub4d NN-1-1=N1+1
4 1p1e2 1+1=2
5 4 a1i N1+1=2
6 5 oveq2d NN1+1=N2
7 3 6 eqtrd NN-1-1=N2