Metamath Proof Explorer


Theorem subgbas

Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subggrp.h H=G𝑠S
Assertion subgbas SSubGrpGS=BaseH

Proof

Step Hyp Ref Expression
1 subggrp.h H=G𝑠S
2 eqid BaseG=BaseG
3 2 subgss SSubGrpGSBaseG
4 1 2 ressbas2 SBaseGS=BaseH
5 3 4 syl SSubGrpGS=BaseH