Metamath Proof Explorer


Theorem submgmbas

Description: The base set of a submagma. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis submgmmgm.h H=M𝑠S
Assertion submgmbas SSubMgmMS=BaseH

Proof

Step Hyp Ref Expression
1 submgmmgm.h H=M𝑠S
2 eqid BaseM=BaseM
3 2 submgmss SSubMgmMSBaseM
4 1 2 ressbas2 SBaseMS=BaseH
5 3 4 syl SSubMgmMS=BaseH