Metamath Proof Explorer


Theorem subne0ad

Description: If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d . Contrapositive of subeq0bd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subne0ad.3 φAB0
Assertion subne0ad φAB

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subne0ad.3 φAB0
4 1 2 subeq0ad φAB=0A=B
5 4 necon3bid φAB0AB
6 3 5 mpbid φAB