Metamath Proof Explorer


Theorem subrec

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion subrec A A 0 B B 0 1 A 1 B = B A A B

Proof

Step Hyp Ref Expression
1 simpll A A 0 B B 0 A
2 simprl A A 0 B B 0 B
3 simplr A A 0 B B 0 A 0
4 simprr A A 0 B B 0 B 0
5 1 2 3 4 subrecd A A 0 B B 0 1 A 1 B = B A A B