Metamath Proof Explorer


Theorem sucdifsn2

Description: Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion sucdifsn2 AAA=A

Proof

Step Hyp Ref Expression
1 disjcsn AA=
2 undif5 AA=AAA=A
3 1 2 ax-mp AAA=A