Metamath Proof Explorer


Theorem sucexb

Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998)

Ref Expression
Assertion sucexb AVsucAV

Proof

Step Hyp Ref Expression
1 unexb AVAVAAV
2 snex AV
3 2 biantru AVAVAV
4 df-suc sucA=AA
5 4 eleq1i sucAVAAV
6 1 3 5 3bitr4i AVsucAV