Metamath Proof Explorer


Theorem sumeq2dv

Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypothesis sumeq2dv.1 φkAB=C
Assertion sumeq2dv φkAB=kAC

Proof

Step Hyp Ref Expression
1 sumeq2dv.1 φkAB=C
2 1 ralrimiva φkAB=C
3 2 sumeq2d φkAB=kAC