Metamath Proof Explorer


Theorem sumsn

Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypothesis fsum1.1 k=MA=B
Assertion sumsn MVBkMA=B

Proof

Step Hyp Ref Expression
1 fsum1.1 k=MA=B
2 nfcv _kB
3 2 1 sumsnf MVBkMA=B