| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumsnf.1 |
|
| 2 |
|
sumsnf.2 |
|
| 3 |
|
csbeq1a |
|
| 4 |
|
nfcv |
|
| 5 |
|
nfcsb1v |
|
| 6 |
3 4 5
|
cbvsum |
|
| 7 |
|
csbeq1 |
|
| 8 |
|
1nn |
|
| 9 |
8
|
a1i |
|
| 10 |
|
simpl |
|
| 11 |
|
f1osng |
|
| 12 |
8 10 11
|
sylancr |
|
| 13 |
|
1z |
|
| 14 |
|
fzsn |
|
| 15 |
|
f1oeq2 |
|
| 16 |
13 14 15
|
mp2b |
|
| 17 |
12 16
|
sylibr |
|
| 18 |
|
elsni |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
csbeq1d |
|
| 21 |
1
|
a1i |
|
| 22 |
21 2
|
csbiegf |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
simplr |
|
| 25 |
23 24
|
eqeltrd |
|
| 26 |
20 25
|
eqeltrd |
|
| 27 |
22
|
ad2antrr |
|
| 28 |
|
elfz1eq |
|
| 29 |
28
|
fveq2d |
|
| 30 |
|
fvsng |
|
| 31 |
8 10 30
|
sylancr |
|
| 32 |
29 31
|
sylan9eqr |
|
| 33 |
32
|
csbeq1d |
|
| 34 |
28
|
fveq2d |
|
| 35 |
|
simpr |
|
| 36 |
|
fvsng |
|
| 37 |
8 35 36
|
sylancr |
|
| 38 |
34 37
|
sylan9eqr |
|
| 39 |
27 33 38
|
3eqtr4rd |
|
| 40 |
7 9 17 26 39
|
fsum |
|
| 41 |
6 40
|
eqtrid |
|
| 42 |
13 37
|
seq1i |
|
| 43 |
41 42
|
eqtrd |
|