Metamath Proof Explorer


Theorem sumsnf

Description: A sum of a singleton is the term. A version of sumsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses sumsnf.1 _ k B
sumsnf.2 k = M A = B
Assertion sumsnf M V B k M A = B

Proof

Step Hyp Ref Expression
1 sumsnf.1 _ k B
2 sumsnf.2 k = M A = B
3 nfcv _ m A
4 nfcsb1v _ k m / k A
5 csbeq1a k = m A = m / k A
6 3 4 5 cbvsumi k M A = m M m / k A
7 csbeq1 m = 1 M n m / k A = 1 M n / k A
8 1nn 1
9 8 a1i M V B 1
10 simpl M V B M V
11 f1osng 1 M V 1 M : 1 1-1 onto M
12 8 10 11 sylancr M V B 1 M : 1 1-1 onto M
13 1z 1
14 fzsn 1 1 1 = 1
15 f1oeq2 1 1 = 1 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
16 13 14 15 mp2b 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
17 12 16 sylibr M V B 1 M : 1 1 1-1 onto M
18 elsni m M m = M
19 18 adantl M V B m M m = M
20 19 csbeq1d M V B m M m / k A = M / k A
21 1 a1i M V _ k B
22 21 2 csbiegf M V M / k A = B
23 22 ad2antrr M V B m M M / k A = B
24 simplr M V B m M B
25 23 24 eqeltrd M V B m M M / k A
26 20 25 eqeltrd M V B m M m / k A
27 22 ad2antrr M V B n 1 1 M / k A = B
28 elfz1eq n 1 1 n = 1
29 28 fveq2d n 1 1 1 M n = 1 M 1
30 fvsng 1 M V 1 M 1 = M
31 8 10 30 sylancr M V B 1 M 1 = M
32 29 31 sylan9eqr M V B n 1 1 1 M n = M
33 32 csbeq1d M V B n 1 1 1 M n / k A = M / k A
34 28 fveq2d n 1 1 1 B n = 1 B 1
35 simpr M V B B
36 fvsng 1 B 1 B 1 = B
37 8 35 36 sylancr M V B 1 B 1 = B
38 34 37 sylan9eqr M V B n 1 1 1 B n = B
39 27 33 38 3eqtr4rd M V B n 1 1 1 B n = 1 M n / k A
40 7 9 17 26 39 fsum M V B m M m / k A = seq 1 + 1 B 1
41 6 40 syl5eq M V B k M A = seq 1 + 1 B 1
42 13 37 seq1i M V B seq 1 + 1 B 1 = B
43 41 42 eqtrd M V B k M A = B