| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplitsn.ph |
|
| 2 |
|
fsumsplitsn.kd |
|
| 3 |
|
fsumsplitsn.a |
|
| 4 |
|
fsumsplitsn.b |
|
| 5 |
|
fsumsplitsn.ba |
|
| 6 |
|
fsumsplitsn.c |
|
| 7 |
|
fsumsplitsn.d |
|
| 8 |
|
fsumsplitsn.dcn |
|
| 9 |
|
disjsn |
|
| 10 |
5 9
|
sylibr |
|
| 11 |
|
eqidd |
|
| 12 |
|
snfi |
|
| 13 |
|
unfi |
|
| 14 |
3 12 13
|
sylancl |
|
| 15 |
6
|
adantlr |
|
| 16 |
|
simpll |
|
| 17 |
|
elunnel1 |
|
| 18 |
|
elsni |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
adantll |
|
| 21 |
7
|
adantl |
|
| 22 |
8
|
adantr |
|
| 23 |
21 22
|
eqeltrd |
|
| 24 |
16 20 23
|
syl2anc |
|
| 25 |
15 24
|
pm2.61dan |
|
| 26 |
1 10 11 14 25
|
fsumsplitf |
|
| 27 |
2 7
|
sumsnf |
|
| 28 |
4 8 27
|
syl2anc |
|
| 29 |
28
|
oveq2d |
|
| 30 |
26 29
|
eqtrd |
|