| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplitsn.ph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fsumsplitsn.kd |
⊢ Ⅎ 𝑘 𝐷 |
| 3 |
|
fsumsplitsn.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
fsumsplitsn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 5 |
|
fsumsplitsn.ba |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐴 ) |
| 6 |
|
fsumsplitsn.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 7 |
|
fsumsplitsn.d |
⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐷 ) |
| 8 |
|
fsumsplitsn.dcn |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 9 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
| 10 |
5 9
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝐵 } ) = ∅ ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) ) |
| 12 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
| 13 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ∈ Fin ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Fin ) |
| 14 |
3 12 13
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ∈ Fin ) |
| 15 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝜑 ) |
| 17 |
|
elunnel1 |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ { 𝐵 } ) |
| 18 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐵 } → 𝑘 = 𝐵 ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 = 𝐵 ) |
| 20 |
19
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 = 𝐵 ) |
| 21 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐷 ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐷 ∈ ℂ ) |
| 23 |
21 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 ∈ ℂ ) |
| 24 |
16 20 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 25 |
15 24
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 𝐶 ∈ ℂ ) |
| 26 |
1 10 11 14 25
|
fsumsplitf |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
| 27 |
2 7
|
sumsnf |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
| 28 |
4 8 27
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 + 𝐷 ) ) |
| 30 |
26 29
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + 𝐷 ) ) |