Metamath Proof Explorer


Theorem fsumsplitf

Description: Split a sum into two parts. A version of fsumsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumsplitf.ph kφ
fsumsplitf.ab φAB=
fsumsplitf.u φU=AB
fsumsplitf.fi φUFin
fsumsplitf.c φkUC
Assertion fsumsplitf φkUC=kAC+kBC

Proof

Step Hyp Ref Expression
1 fsumsplitf.ph kφ
2 fsumsplitf.ab φAB=
3 fsumsplitf.u φU=AB
4 fsumsplitf.fi φUFin
5 fsumsplitf.c φkUC
6 nfcv _jC
7 nfcsb1v _kj/kC
8 csbeq1a k=jC=j/kC
9 6 7 8 cbvsumi kUC=jUj/kC
10 9 a1i φkUC=jUj/kC
11 nfv kjU
12 1 11 nfan kφjU
13 7 nfel1 kj/kC
14 12 13 nfim kφjUj/kC
15 eleq1w k=jkUjU
16 15 anbi2d k=jφkUφjU
17 8 eleq1d k=jCj/kC
18 16 17 imbi12d k=jφkUCφjUj/kC
19 14 18 5 chvarfv φjUj/kC
20 2 3 4 19 fsumsplit φjUj/kC=jAj/kC+jBj/kC
21 csbeq1a j=kj/kC=k/jj/kC
22 csbcow k/jj/kC=k/kC
23 csbid k/kC=C
24 22 23 eqtri k/jj/kC=C
25 21 24 eqtrdi j=kj/kC=C
26 7 6 25 cbvsumi jAj/kC=kAC
27 7 6 25 cbvsumi jBj/kC=kBC
28 26 27 oveq12i jAj/kC+jBj/kC=kAC+kBC
29 28 a1i φjAj/kC+jBj/kC=kAC+kBC
30 10 20 29 3eqtrd φkUC=kAC+kBC