| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplitf.ph |
|
| 2 |
|
fsumsplitf.ab |
|
| 3 |
|
fsumsplitf.u |
|
| 4 |
|
fsumsplitf.fi |
|
| 5 |
|
fsumsplitf.c |
|
| 6 |
|
csbeq1a |
|
| 7 |
|
nfcv |
|
| 8 |
|
nfcsb1v |
|
| 9 |
6 7 8
|
cbvsum |
|
| 10 |
9
|
a1i |
|
| 11 |
|
nfv |
|
| 12 |
1 11
|
nfan |
|
| 13 |
8
|
nfel1 |
|
| 14 |
12 13
|
nfim |
|
| 15 |
|
eleq1w |
|
| 16 |
15
|
anbi2d |
|
| 17 |
6
|
eleq1d |
|
| 18 |
16 17
|
imbi12d |
|
| 19 |
14 18 5
|
chvarfv |
|
| 20 |
2 3 4 19
|
fsumsplit |
|
| 21 |
|
csbeq1a |
|
| 22 |
|
csbcow |
|
| 23 |
|
csbid |
|
| 24 |
22 23
|
eqtri |
|
| 25 |
21 24
|
eqtrdi |
|
| 26 |
25 8 7
|
cbvsum |
|
| 27 |
25 8 7
|
cbvsum |
|
| 28 |
26 27
|
oveq12i |
|
| 29 |
28
|
a1i |
|
| 30 |
10 20 29
|
3eqtrd |
|